Assessment of Orographic Effects on Extreme Rainfall Event in Rwanda using WRF Model

Gretta Muhimpundu

MSc. in Environmental Science and Engineering

Presentation Outline

- >Introduction
- ➤Study area description
- Data Collection and Methodology
- ➢ Results and discussions
- ➤Conclusions

1. Introduction

Orographic precipitation mechanisms (Houze Robert Jr, 2012)

2. Study Area

Rwanda: located in Central-East Africa

```
Coordinates :1°04' -2°51'S, 28°45' -31°15'E
```

Area: 26,338 sq. km

Rainfall annual amount =

800 -1400 mm

3. Data Collection and Methodology

Spatial rainfall distribution using IDW

WRF Modeling system flow chart

For verification: Threat score, Bias score, Root Mean Square Error and Mean Absolute Error were used

3. Data Collection and Methodology

Model Parameters	Options Used			
Grid Resolution	D1:27km	D2:9km	D3:3km	
Data	NCEP fnl (1°X1°)	D1 output	D2 output	
Cumulus Parameterization Schemes (CPS)	1. Kain-Fritsch (KF)			
	2. Betts Miller Janjic (BMJ)			
	3. Grell Devenyi (GD)			
	4. Arakawa (ARA)			
	5. Previous Kain- Fritsch (PKF)			
Microphysics Scheme	WSM3-class simple scheme			
PBL Scheme	YSU scheme (Hong et al. 2006)			
Land Surface	Noah			
Radiation Scheme	RRT for longwave and Dudhia for short wave radiation			

4. Results and Discussions a. Sensitivity of WRF to different CPS

b. Model Skilfulness Verification

CPS	MAE	RMSE
Kain Fritsch (KF)	21.47438	28.06659
Betts Miller Janjic(BMJ)	10.89266	15.16162
Grell Devenyi (GD)	29.14266	39.17605
Simplied Arakawa-Schubert(ARA)	26.17313	33.95771
Previous Kain Fritsch (PKF)	15.43283	18.42318

c. Sensitivity tests with modified topography

Experiment 1:

Flat terrain **Experiment 2:** RT higher than 1400 m by 10% **Experiment 3**: RT by 20% **Experiment 4** : RT to 1400 m for the westernmost

Plots for Terrain Height from WRF output

Actual Topography

RT to 1400m - Flat

Terrain Height

RT higher to 1400m on the Westernmost side

side

Rainfall Results

Simulated accumulated rainfall in 24 hours with AT and 4 Experiments

24 hours accumulated Rainfall differences between RT and the AT.

Influence of topography on wind field

wind direction & speed (RT)

Wind Flow at 800hPa (RT to 1400 m-flat)

Init: 2011-11-30_00:00:00 Valid: 2011-11-30_18:00:00

wind direction & speed (AT)

Wind Flow at 800hPa (Actual Topography)

Init: 2011-11-30_00:00:00 Valid: 2011-11-30_18:00:00

OUTPUT FROM WRF V3.7.1 MODEL WE = 148 : SN = 112 : Levels = 30 : Dis = 3km : Phys Opt = 3 : PBL Opt = 1 : Cu Opt = 2

Vertical Cross Section Analysis(ctd)

Cloud and Rain water mixing ratios at 10 UTC (12pm)

Vertical velocity and wind vectors at 10 UTC (12 pm)

Vertical Cross Section Analysis (2nd)

Cloud and Rain water mixing ratios at 14 UTC (4pm)

.1 .2

Vertical velocity and wind vectors at 14 UTC (4pm)

Vertical Cross Section Analysis (2nd)

Cloud and Rain water mixing ratios at 17 UTC (7 p.m.)

Vertical velocity and wind vectors at 17 UTC (7 p.m.)

5. Conclusions

- The BMJ cumulus performed better than other CPS
- WRF/BMJ has high performance on low rainfall amount (0 to 20mm)
- Further studies
- Consideration of all WRF Physical schemes to find a good combination
- Examination of Land Use effects on rainfall distribution
- Detailed study for long period

Orographic Mechanisms observed for Rwanda on 30 November 2011

THANK YOU FOR YOUR ATTENTION

References

Argent, R., Sun, X., Semazzi, F., Xie, L., & Liu, B. (2015). The development of a customization framework for the WRF model over the lake Victoria basin, e astern Africa on seasonal timescales. *Advances in Meteorology*, 2015. https://doi.org/10.1155/2015/653473

Dell, M., Jones, B. F., & Olken, B. A. (2014). What Do We Learn from the Weather ? The New Climate–Economy Literature. *Journal of Economic Literature*, 52(3), 740–798. https://doi.org/10.3386/w19578

Felix, N. J. (2015). CHARACTERISTICS OF EXTREME RAINFALL EVENTS, (August).

Flesch, T. K., & Reuter, G. W. (2012). WRF model simulation of two Alberta flooding events and the impact of topography. *Journal of Hydrometeorology*, 1 3(2009), 695–708. https://doi.org/10.1175/JHM-D-11-035.1

Georgakakos, K. P., & Hudlow, M. D. (1984). Quantitative Precipitation Forecast Techniques for Use in Hydrologic Forecasting. *Bulletin of the American Met eorological Society*. https://doi.org/10.1175/1520-0477(1984)065<1186:QPFTFU>2.0.CO;2

Jr, R. A. H. (2012). OROGRAPHIC EFFECTS ON PRECIPITATING CLOUDS, (2011), 1–47. https://doi.org/10.1029/2011RG000365.1.INTRODUCTION

Kizza, M., Westerberg, I., Ntale, H. k., & Rodhne, A. (2009). Estimating Areal Rainfall over the Lake Victoria and its basin uing ground-based and satellite data.

Li, L., Schmid, W., & Joss, J. (1995). Nowcasting of Motion and Growth of Precipitation with Radar over a Complex Orography. *Journal of Applied Meteorol ogy*. https://doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2

MIDIMAR. (2012). Republic of Rwanda, Ministry of Disasters Management and Refugee Affairs, identification of disaster higher risk zones on floods and la ndslides, (March), 1–33.

Ntwali, D., Ogwang, B. A., & Ongoma, V. (2016). The impacts of topography on spatial and temporal rainfall distribution over Rwanda based on a model. *A tmospheric and Climate Sciences*, 6(April), 145–157. https://doi.org/10.4236/acs.2016.62013

OPW. (2002). Report of the FLOOD POLICY REVIEW GROUP.

Pohl, B., Crétat, J., & Camberlin, P. (2011). Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. *Climate Dynamics*, 37(7–8), 1357–1379. https://doi.org/10.1007/s00382-011-1024-2

Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill, D. O., ... Duda, M. G. (2017). The Weather Research and Forecasting (WRF) Model: Overview, System Efforts, and Future Directions. *Bulletin of the American*

Nov-30-2011 00: 12 UTC

Nov-30-2011 09: 12 UTC

Nov-30-2011 18: 12 UTC

Satellite pictures from METEOSAT-9 Nov-30-2011 03: 12 UTC

Nov-30-2011 12: 12 UTC

Nov-30-2011 21: 12 UTC

Nov-30-2011 06: 12 UTC

Nov-30-2011 15: 12 UTC

Dec-01-2011 00: 12 UTC

2. Synoptic conditions analysis (domain1)

Sea Level Pressure on 30 Nov 06 UTC with an interval of 2hPa

Wind field and water vapor mixing ratio at 850hPa

d. Vertical Cross Section Analysis

Cloud and Rain water mixing ratios at 01 UTC (3 am)

Vertical velocity and wind vectors at 01 UTC (3 am)

3. Data Collection and Methodology

Statistical Verification of WRF Model

1. Threat Score (TS) $TS = \frac{Hits}{Hits+False \ alarms+Misses}$

2. Bias Score (BS)

 $BS = \frac{Hits + False \ alarms}{Hits + Misses}$

3. Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(S-O)^2}{N}}$$

4. Mean Absolute Error (MAE)
$$MAE = \sum \frac{S-0}{N}$$

3. Diurnal Variation of Low –level wind field (AT)

wind vectors field and RH at 06 UTC(8am)

wind vectors field and RH at 12 UTC(2pm)

